

Herausforderungen und Techniken der fluoreszenzmikroskopischen Bildgebung und Analyse

Online-Seminar – 8. Juni 2021

PD Dr. Johannes Kacza Biolmaging Core Facility Sächsischer Inkubator für klinische Translation / SIKT Veterinärmedizinische Fakultät / VMF Philipp-Rosenthal-Straße 55 04103 Leipzig Tel.: 49 341 97-39475 E-Mail: kacza@vetmed.uni-leipzig.de

I FIP7IG

https://bioimaging.uni-leipzig.de/home_en.html

<u>Struktur</u>

• Virtuelle Core Facility der Fakultät für Lebenswissenschaften und der Veterinärmedizinischen Fakultät

Anwendungen und Ziele

- Mikroskope für fluoreszenzmikroskopische 3D/4D-Bildgebung, Live Cell Imaging und spezielle Messtechniken
- High-End-Software für Abbildungsfehlerkorrektur (Deconvolution), 3D/4D-Visualisierung und Auswertung
- Multidiziplinäre und geräteübergreifende Expertise für Anwendungen fluoreszenzmikroskopischer Bildgebung
- Beratung, Auswertungskonzeption, Geräteeinweisungen

Fluoreszenzmikroskope

• Confocal Laser-Scanning-Microscopy (CLSM), Spinning Disk, Structured-Illumination Microscopy (SIM), STED

Weitere Geräte

• Incucyte Zoom Life Imaging (Scratch Assays), Cell Capture System, Workstations

Mikroskope für 3D/4D	Merkmale		Anwendungen	Standort
Leica SP8 inverses Stativ	Zusätzl. Stage für xz-Scans, 8 kHz-Scanner, hochempfindliche Hybrid-Detektoren, Virtual Slide Operation, 2 Top-Stage- Inkubatoren (schnelle z-Scans beim LCI)		LCI mit infektiösem Material (S2), Zeitserien, Photon Counting, Focus Map, Calcium Imaging	VMF / Veterinär- Anatomisches Institut
Leica SP8 FALCON inverses Stativ	Zusätzl. Stage für xz-Scans, 8 kHz-Scanner, hochempfindliche Hybrid-Detektoren, Virtual Slide Operation, Top-Stage- Inkubator, gepulster 470 nm Laser (FLIM)		LCI, Zeitserien, Photon Counting, Focus Map, FLIM, FRET, FRAP	Lebenswissenschaften / Institut für Biochemie
Zeiss LSM 780 AiryScan inverses Stativ	AiryScan-Modul für höhere Auflösung, 100x/1.57 Oil- Objektiv		Super Resolution Microscopy, Zeitserien, Photon Counting, FRAP	SIKT
Zeiss LSM 800 aufrechtes Stativ	16x Oil Objektiv, Inkubationssystem		LCI, Zeitserien	Lebenswissenschaften / Institut für Biologie
Zeiss Spinning Disc inverses Stativ	Disc Speed 1.500 – 5.000 U/min, Abgedunkeltes Inkubationssystem		Schnelle Mosaik-Scans mit fester Auflösung, LCI, Zeitserien, FRAP	SIKT
Zeiss Apotome aufrechtes Stativ	Structured Illumination Microscope, RGB- und SW-Kamera, 100x/1.46 Oil-Objektiv		schnelle Aufnahmen, Z-Stacks mit fester Auflösung	SIKT
Zeiss Axioplan Imaging aufrechtes Stativ	Structured Illumination Microscope, RGB- und SW-Kamera, programmierbare Tisch- und Kamerasteuerung		individuell programmierte Aufnahmeroutinen für Weitfeldmikroskopie (Hellfeld, Fluoreszenz)	SIKT
LCI: Live Cell Imaging Photon Counting: Intensitätsmessungen durch Photonenzählung		FLIM: Fluorescence Life Time Microscopy (Unterscheidung verschiedener Fluorophore) FRET: Förster Resonance Energy Transfer Microscopy (molekulare Abstandmessungen) FRAP: Fluorescence Recovery After Photobleaching (Abbildung von Diffusionsprozessen)		

Spezielle Systeme	Merkmale	Anwendungen	Standort
IncuCyte Zoom inverses Stativ	Epilfuoreszenzmikroskop, LCI, automatisierter Inkubator mit Bildaufzeichnung für Multiwell-Plates	Cell Migration, Scratch and Wound Assays	SIKT
Zeiss PALM Microbeam inverses Stativ	Laser Microdissection System	Visuell kontrolliertes Laser-Schneiden von Gewebeschnitten für weitere Untersuchungen	SIKT

A Markieren und Ausschneiden des gewünschten Schnittareals mit Laser

B Abtrennen der ausgeschnittenen Probe vom Objektträger durch Laserpuls

C Auffangen der durch Laser bewegten Probe in Probengefäß

Workstations	Merkmale	Anwendungen	Standort
Terra Workstation	Software: LAS-X, Huygens Professional 21.04, Imaris 9.7.2	Deconvolution, Object Analyzer, PSF Destiller, 3D/4D-Visualisierung und Bildanalyse	VMF / früheres Institut für Immunologie
HP Z28 Workstation	Software: ZEN, Huygens Professional 21.04, Imaris 9.7.2	Deconvolution, Object Analyzer, PSF Destiller, 3D/4D-Visualisierung und Bildanalyse	SIKT

Warum Konfokalmikroskopie anstelle von Weitfeld-Fluoreszenzmikroskopie?

Die Optik des Mikroskops* ändert jede Punktquelle der Probe entsprechend einer "Punktspreizfunktion" / Point Spread Function (**PSF**)

Astroglia, Cy3-Markierung, <u>Weitfeld-Fluoreszenzmikroskopie</u>: Darstellung der Objekte weitet sich bis zum Deckglas

Abbild eines sphärischen Objekts nach CLSM und rechnerischer Entfaltung (Deconvolution) mit einer theoretischen PSF

Eine PSF ist Mikroskop-spezifisch und verändert sich über längere Zeit am gleichen Mikroskop!

Astroglia, Cy3-Markierung, <u>Konfokalmikroskopie nach Deconvolution</u>: Darstellung der Objekte bleibt innerhalb des aufgezeichneten Volumens

Warum Konfokalmikroskopie anstelle von Weitfeld-Fluoreszenzmikroskopie?

Weitfeldmikroskopie

Warum Konfokalmikroskopie anstelle von Weitfeld-Fluoreszenzmikroskopie?

Deckglas

Optical section

- Konfokalmikroskopie erfolgt durch Aufnahmen von Optical Sections
- Dicke der Optical Section abhängig von numerischer Appertur des Objektivs (NA) und Durchmesser des Pinhole des CLSM

Schnitt

2,7 mm

Einfach zu beachten und wichtig!

Objektträger

Optical Section

- Bei inversen Mikroskopen: gekippte Proben durch Deckgläser, die zu nah am Rand der Objektträger liegen
- Paralleles "Sandwich Design": Objektträger Probe Deckglas, durch dünne Distanzfolien zwischen Objektträger und Deckglas

CLSM und Deconvolution: Auswirkungen auf Visualisierung und Strukturanalyse

Astroglia, Cy3, Hirnschnitt Ratte Neben Astrozytenfortsätzen deutliches Signal (Pfeile) in Originaldaten (A, C). Keine Signale nach Deconvolution (B), Intensität = 0, gepunktete Linie in C.

 CLSM - Originaldaten

 S

Intensitätsprofile

Keratin, Cy3, Keratinozyten Maus Optical Section der CLSM-Originaldaten enthält auch Signale von darüber- und darunterliegenden Ebenen (A, C). Durch Deconvolution werden diese Signale zurück an ihren "Ursprungsort" gesetzt (**B**, **C**).

Herausforderungen der Probenpräparation für CLSM und Deconvolution

Fixierung

Alkohol verdrängt Wasser aus Gewebe → ungleichmäßige und irreversible Schrumpfung (z stärker als x/y!)

<u>Mikrotomie</u>

- 3D-Strukturdarstellung und Analyse in Paraffinschnitten stark beeinträchtigt (Alkohol!)
 → Vibratome-Schnitte in wässerigem Milieu (z.B. Puffer) erhalten 3D-Architektur am besten
- Evtl. Gefrierschneiden, aber Gefrierartefakte (Gewebsschädigungen) vermeiden

Fluorophore

- Abgleich der Exzitationsmaxima mit vorhandenen Laserlinien des CLSM
- Überschneidung von Emissionsspektren (cross talk) minimal halten, cross talk im SpectraViewer prüfen 👁
- Autofluoreszenz vermeiden (z.B. nach Aldehydfixierung), kontrollieren und ggf. messen (Lambda-Scan)

<u>Eindecken</u>

- Brechungsindex (RI) von Eindeck- und Immersionsmedium gleich?
- Brechungsindex des Eindeckmediums sollte für Deconvolution bekannt sein
- Bester 3D-Strukturerhalt beim Eindecken in wässeriger Lösung, Versiegeln des Deckglases erforderlich!
- Zur Messung der PSF* sub-resolution beads (z.B. TetraSpeck 0.1 μm microspheres) mit Probe eindecken

* mit PSF Destiller / Huygens Professional: siehe BCF-Homepage / Protocols / TetraSpeck Microspheres - J.Kacza_BCF+SVI 10.07.2020.pdf

Herausforderungen der Probenpräparation für CLSM und Deconvolution

<u>Zellkultursysteme</u>

- Nur Zellkultursysteme mit Glasboden (170 μm Borosilikatglas) oder mit für CLSM spezifiziertem Polymerboden z.B. ibidi μ-Slides[®], μ-Plates[®], μ-Dishes[®]
- Stabile Adhärenz der Zellen im Zellkultursystems prüfen, manche Zellen werden auf Glas schlecht adhärent

Objektive des CLSM

- Hohe numerische Apertur (NA) = bessere PSF und Auflösung der z-Achse
- Wahl des Immersionsobjektivs: RI Immersionmedium = RI Eindeckmedium

<u>Pixelgröße</u>

• Pixel size am CLSM entsprechend Nyquist-Kriterium einstellen, Berechnung mit: <u>https://svi.nl/NyquistCalculator</u> 👁

<u>Fazit</u>

- Parameter von Präparat und Geräteeinstellung sind wesentlich für gute fluoreszenzmikroskopische Bildgebung
- VOR Beginn der Untersuchung / Studie Kompatibilität aller methodischen und technischen Schritte prüfen
- Bei Unklarheiten begrenzte Pilotstudie zur Ermittlung adäquater Parameter, inkl. Auswertung (!) durchführen
- Bei Fragen Beratung mit BCF-Team vereinbaren

UNIVERSITÄ LEIPZIG

https://bioimaging.uni-leipzig.de/home_en.html

Nutzung der Geräte der Biolmaging Core Facility

- Ziele des geplanten Nutzung und Wahl des geeigneten CLSM mit BCF-Team besprechen
- Online-Registrierung bei BCF mit Angabe des Projektverantwortlichen
- BCF-Nutzungsordnung ausdrucken und unterzeichnet an BCF-Team
- Für Nutzer außerhalb der Universität Leipzig ist zusätzlich eine Nutzungsvereinbarung erforderlich (Schlüssel, Transponder, Zugangsberechtigungen, etc.)
- Einweisung am vereinbarten Mikroskop durch BCF-Team
- Für manche Gerätestandorte S1 bzw. S2-Belehrung durch verantwortlichen Projektleiter erforderlich
- Weitere spezifische Besonderheiten im LSM-Labor beachten (eigene Kittel, Laborschuhe, etc.)
- Mikroskopnutzung nach Online-Buchung im BCF-Buchungskalender
- Abrechnung der Gerätenutzung entsprechend Kostentafel für Nutzungsentgelte der BCF-Nutzungsordnung